e--loragdex

Swiss. Embedded. Computing.

Introduction to
Embedded Linux Security

Presented by

Toradex

WHAT WE DO ¢-Toradex

B

. @ Lucerne - Switzerland
Make Embedded Computing Easy #izsatie= o

® Tokyo - Japan

Reliable Arm® System on Modules @ Shanghai - China

New Delhi - India @

Lowest Cost of Ownership Bengaluru - India e ® HCNC - Vietnam

Industry-leading Support

@ S50 Paulo - Brazil

RELIABLE AND EASY-TO-USE EMBEDDED SOLUTIONS FOR YOU

PRODUCT ¢-loragex.

PORTFOLIO

o Apalis iMX8 Apalis TK1 Apalis iMX8X o Apalis T30 o Apalis iMX6

P -—.3
=0
-

< Torizon®

o Colibri iMX8X o Colibri T30 o Colibri T20 Colibri iMX6 o Colibri iMX7 Colibri iMX6ULL — Colibri VF61 ° Colibri VF50 -

NVIDIA.

Colibii_ NG o\ A & A : O TIN. <IN ~ (ﬁm’\osl

Introducing Verdin

Verdin

TYPICAL
APPLICATIONS

TOP MARKETS
Industrial Automation
Medical / Laboratory
Test & Measurement
Transportation / Specialty Vehicles
Building Automation

Environment Monitoring

ANNUAL VOLUMES
100 to 50k

e--Joradex

Swiss. Embedded. Computing.

<& 0 ™ Easy-to-use
\/ TO r I Z O n Indl},strial: Linux Software Platform

#»H @ ©

Fast time-to-market Open Source _Simple updates
Ready-to-use Based on open software, Built-in, automotive-grade,
Linux distribution No lock-in over-the-a_|r- ypdate
capabilities

Secure Real-time
Frequent updates, accessible Optimized real-time option
security features

yocto -

PROJECT

PARTICIPANT

&

docker

D« Visual Studio

B

CODESYS

INTRODUCTION TO SECURITY

~ Computer security is basically the protection of computer systems and
iInformation from harm, theft, and unauthorized use.

+» On an embedded device, both hardware and software need to be
protected to some degree.

» The computer security field is really about managing risks!

SECURITY CONCEPTS |

~ Owners:. those who benefits from the product (user, manufacturer,
business owner, etc).

~ Assets: anything that has value to the owners (data, code, etc).

» Threats: anything that are capable of acting against an asset in a manner
that can result in harm.

SECURITY CONCEPTS Il

~ Threat actors (or threat agents): person or thing that can manifest a threat
(malicious hacker, government, etc).

~ Attack vectors (or attack surface): methods or pathways used by a threat
actor to access or penetrate the target system.

+ Vulnerabilities: weakness which can be exploited by a threat actor.

SECURITY CONCEPTS Il

\ value

[Owners wish to minimise
o ce \ reduce
P .[Countermeasures J
that may
. f be reduced by] that may
may be aware 0 . ,
Vulnerabilities J= PO5SB30
leading to
i] based on { f) =
ased on {(set o . .
Attack Vectors FREEARE _’[Risks]
use T to
. " that increase Y
Threat agents wﬁ[Threats to Assets]
I ‘g

wish to abuse and/or may damage

Source: Enisa - Hardware Threat Landscape and Good Practice Guide ‘

THREAT MODELING

» S0 security is all about identifying threats to minimize risks of assets being
compromised.

~ Threat modeling is a process where potential threats can be identified,
enumerated, and mitigations can be prioritized.

« It Is basically a risk assessment process where you evaluate the value of
your assets and the cost to protect them.

» The result of threat modeling is the threat model of your product.

THREAT MODELING

Attack surface

Assets) Threats/Risks <mmm) Mitigation mmmm) Threat model

|

Threat modeling methodologies
(STRIDE/DREAD, CIA, CVSS)

STRIDE
N N

Spoofing Pretend to be someone else. Authentication Hack victim’s email and use to send
messages in name of the victim.

Tampering Change data or code. Integrity Software executive file is tampered
by hackers.
Repudiation Claiming not to do a Non-repudiation “l have not sent an email to Alice”.
particular action.
Information Disclosure Leakage of sensitive Confidentiality Credit card information available on
information. the internet.
Denial of Service Non-availability of service Availability Web application not responding to
user requests.
Elevation of privilege Able to perform unauthorized Authorization Normal user able to delete admin
action account

Source: https://allabouttesting.org/stride-acronym-of-threat-modeling-system/

https://allabouttesting.org/stride-acronym-of-threat-modeling-system/

DREAD

Damage Attacker can subvert security Leaking sensitive information Leaking trivial information
potential system, get full trust authorization,
run as admin, upload content

Reproducibility Attack can be reproduced every Attack can be reproduced but Attack is difficult to reproduce,

time and does not require a timing only with timing window and even with knowledge of the
window particular race situation security hole
Exploitability A novice programmer could make A skilled programmer could Attack requires extremely skilled
the attack in a short time make the attack, then repeat person and in-depth knowledge
the steps. every time to exploit
Affected users All users, default configuration, Some users, non-default Small percentage of users,
key customers configuration obscure feature; affects

anonymous users

Discoverability Published information explains the Vulnerability is in seldom-used The bug is obscure; unlikely that
attack; Vulnerability is in most part of product users will work out damage
commonly used feature potential

Source: https://www.slideshare.net/Securitylnnovation/threat-modeling-to-reduce-software-security-risk

https://www.slideshare.net/SecurityInnovation/threat-modeling-to-reduce-software-security-risk

THREAT MODEL EXAMPLE

Threat

Any user is able to login in the admin web
page and change device configuration

A network application could be exploited
to run unauthorized code

With physical access, a threat actor could
extract user data

Using a MitM attack, a threat actor could
change the firmware image during the
update process

A threat actor could execute DoS attacks
on the device

Score

14

13

12

11

11

Mitigation
Implement a web-based authentication
mechanism

Drop application privileges and run it inside a
container

Use encryption to protect user data

Check the signature of the update image

Create firewall rules to avoid or minimize DoS
attacks' impact

SECURE BOOT CONCEPTS

» The objective of a secure boot is to protect the integrity and authenticity of
the code.

~ Why? To make sure the binaries you're running were built by a trustworthy
person or company!

~ It has costs like key management, boot time, harder to develop on the
platform, etc.

HOW DOES IT WORK?

~ Everything is based on the verification of digital signatures (no encryption
iInvolved).

~ The authenticity of every component of the system should be verified
(bootloader, kernel, rootfs, etc).

» That means the first element in the boot process authenticates the second,
that authenticates the third, etc.

« This Is called a chain-of-trust.

HOW DOES IT WORK?

ROMcode =~ Bootloader '~ Linuxkernel @~ RoOOtFS
_ signature _ signature _ signature

verification verification verification

HOW TO IMPLEMENT IT?

~ Everything starts in the ROM code inside the SoC (Root of Trust).

» The ROM code will check the signature of the bootloader.

~ |t needs a way to store the public key(s) (e.g. OTP fuses).
~ To make it less expensive, usually only the hash of the public key is stored.

~ The Bootloader (e.g. U-Boot) will check the integrity of the FIT image.
~ The FIT image is a container for multiple binaries with hashing and signature support.

|t contains the Linux Kernel image, device tree files and an initial ramdisk.

HOW TO IMPLEMENT IT?

~ The ramdisk will have the logic to verify and mount the rootfs using the dm-verity
kernel module and the veritysetup tool.

» The device-mapper verity provides integrity checking of block devices.

It requires a read-only rootfs (squashfs can be a good solution).

« The rootfs partition should generated with dm-verity support.

~ Another approach would be IMA or dm-integrity for read-write filesystems.

« This Is only one example of secure boot implementation, although it could be
applied to a different set of boards and ARM SoCs.

SECURE BOOT ON 1.MX6

U-Boot

iMx6 -

signature

verification
OTP fuses

U-Boot signature
and certificate

signature
verification

NXP custom tool (Code Signing Tool)

veritysetup
FIT Image
| |
Linux kernel verity metadata }
|
hash tree
Device trees
signature
verification
RootFS (read only)
Ramdisk
- pubkey3

Buildsystem (OE or Buildroot)

OOPS...

» Nothing is 100% secure!

~ Secure boot vulnerabilities in ROM code of 1.MX6, I.MX50, .MX53, 1.MX7,
1.MX28 and Vybrid families publicly disclosed July 17th, 2017.

https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.htmi

https://community.nxp.com/docs/DOC-334996

« The vulnerabilities were fixed with new silicon.

https://developer.toradex.com/knowledge-base/secure-boot-vulnerabilities-for-imx-vybrid-errata-err010872-err010873

https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.html
https://community.nxp.com/docs/DOC-334996
https://developer.toradex.com/knowledge-base/secure-boot-vulnerabilities-for-imx-vybrid-errata-err010872-err010873

CODE AND DATA ENCRYPTION

~ While secure boot ensures authenticity, it does not protect the device from being
counterfeited or prevent threat actors from extracting code or data from the device.

« If you want to protect your intellectual property or ensure data confidentiality, you will
need to use encryption.

* It not common to encrypt the code on an embedded Linux system (but you could want to
encrypt your applications).

~ Be aware of GPLv3 (Tivoization).

~ On the other hand, application or user data confidentiality and protection might be a
requirement, for example on medical devices.

CODE AND DATA ENCRYPTION

» There are basically two main approaches to file encryption in Linux: full disk
encryption and file-based encryption.

« A full disk encryption provides encryption at the block level and the whole disk or
a disk partition is encrypted.

~ dm-crypt is the Linux kernel's device mapper crypto target.

« A file-based encryption provides encryption at the file system level, where each
directory may be separately and optionally encrypted with a different key.

~ fscrypt is an API available on some filesystems like EXT4, UBIFS and F2FS.
~ eCryptFS is implemented as a layer that stacks on top of an existing filesystem.

SECURE BOOT WITH ENCRYPTION

veritysetup
\ \
FIT Image verity metadata |
Linux kernel hash tree
U-Boot Sawre oot

i MX6 :; :> (squashfs, ro)

Device trees

signature - signature
verification U-Boot signature verification /
OTP fuses

and certificate .
~ pubkeylhash ecryptis-utils ecryptfs
Ramdisk dat
ata
- pubkey3 (extd,)

NXP custom tool (Code Signing Tool)

WHERE |IS THE KEY?

LI B
sAConnectorto,

L UL S P
" s

¥BOX LOT Tap bunnie@mit. edu %

S LT SRR 1'**1‘1!!"‘ t.?
™~ TYTT P T°r

.J

l

o
=]
~
B

Source: https://bunniefoo.com/nostarch/HackingTheXbox_Free.pdf

https://bunniefoo.com/nostarch/HackingTheXbox_Free.pdf

PRIVATE KEY STORAGE

« A symmetric-key algorithm is usually used for encryption, so you have to store the
private key somewhere in the system to decrypt the data.

» And the protection of the encrypted data is as secure as the protection of the key
to decrypt it!

+ On a desktop or smartphone, the key used to encrypt the filesystem is derived
from a user password (passphrase) entered interactively.

+ On an embedded system, it should be stored encrypted in the filesystem or in a
secure storage isolated from the system.

KEY STORAGE ON I.MX PROCESSORS

» On I1.MX, each processor has a unique master key (pre-programmed by NXP) that
can only be accessed by the CAAM (Cryptographic Accelerator and Assurance
Module) module.

» S0 the CAMM module can be used to encrypt the filesystem encryption key with
the unique processor master key (this would have to be done during
manufacturing).

» The encrypted key could be stored in the boot or rootfs partition.

~ During boot, the CAMM module would be used to decrypt the key and restore the
plain key that would be used to decrypt the filesystem.

KEY STORAGE ON EXTERNAL DEVICES

>

If you don’t have security features in your processor, you could achieve the same
results with an external hardware like a Secure Element or a TPM device.

These external devices usually provide secure storage, so they could be used to
store a master key that could be used to encrypt/decrypt the filesystem encryption
key.

These devices also offer a lot of security features like random number generation,
hash calculation, crypto and signing functions, etc.

Also, a TEE (Trusted Execution Environment) could also be used to securely store
the key (we'll talk about TEE later in this presentation).

SECURE ELEMENT

>

A Secure Element is a secure computing system.

*

It Is basically a secure storage with its own secure applications (usually
Implemented using Java Card, but not necessary).

*

What a secure element does is very open and depends on the
Implementation, but most of them implement Public-Key Cryptography
Standard 11 (PKCS#11).

>

Examples of Secure Elements are smart-cards and SIM-cards.

TPM

*

A TPM (Trusted Platform Module) is a specification and an international
standard (ISO/IEC 11889).

~ TPM Is not a Secure Element, although it could be implemented inside
one.

+ Can be implemented in hardware or software, but most implementations
are in hardware.

« It provides a set of limited security features defined by the standard,
Including secure storage and cryptographic functions.

SECURE CODING

» You could protect your code and data with encryption, but if you running an
application with bugs that could be exploited, your assets are still at risk
anyway.

« If an application has attack vectors (user input, configuration files, network
communications, etc), a bug could be used to exploit the application.

~ Especially programs written in memory unsafe languages like C/C++, bugs
like buffer overflows could be used in attacks like stack smashing and
format strings.

CVE-2019-14835

«~ A buffer overflow flaw was found,
In versions from 2.6.34 to 5.2.x,
In the way Linux kernel's vhost
functionality that translates
virtqueue buffers to 10Vs, logged
the buffer descriptors during
migration. A privileged guest user
able to pass descriptors with
invalid length to the host when
migration is underway, could use
this flaw to Increase their
privileges on the host.

diff --git a/drivers/vhost/vhost.c b/drivers/vhost/vhost.c
index 34ea219936e3..acabf20b069%e 100644
-- a/drivers/vhost/vhost.c
+++ b/drivers/vhost/vhost.c
@@ -2180,7 +2180,7 @@ static int get indirect(struct vhost virtqueue *vq,
/*¥ If this is an input descriptor, increment that count. */
if (access == VHOST ACCESS WO0) {
*in_num += ret;
. if (unlikely(log)) {
+ if (unlikely(log && ret)) {
log[*log _num].addr = vhost64 to cpu(vq, desc.addr);
log[*log num].len = vhost32 to cpu(vq, desc.len);
++*1og_num;
@@ -2321,7 +2321,7 @@ int vhost get vq desc(struct vhost virtqueue *vq,
/*¥ If this is an input descriptor,
* increment that count. */
*in_num += ret;
. if (unlikely(log)) {
+ if (unlikely(log && ret)) {
log[*log num].addr = vhost64 to cpu(vq, desc.addr);
log[*log num].len = vhost32 to cpu(vq, desc.len);
++*1og_num;

Source: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14835

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14835

STATIC CODE ANALYSIS

« Always use static analysis tools to check your code and don't ignore compiler
warnings.

~ Static analysis tools are able to analyze the source code (without running the
program) to find problems before they happen.

» These tools can find program errors like null pointer dereferences, memory leaks,
Integer overflow, out of bounds access, use before initialization, etc!

« There are many good open source (cppcheck, splint, clang, etc) and commercial
(Coverity, PC-Lint, etc) options for static code analysis.

RUNTIME PROTECTIONS

~ Build the system with protections (ASLR, stack canaries, electric fence, ASan,
etc) and do dynamic analysis of you programs!

+ ASLR (Address Space Layout Randomization) is a computer security technique
that randomly arranges the address space positions of key data areas of a
process (text, stack, heap, libraries, etc).

+ AddressSanitizer (ASan) is an instrumentation tool created by Google security
researchers to identify memory access problems in C and C++ programs.

~ Valgrind could help to detect memory related problems like leaks and data races.

FUZZING TOOLS

~ Test the system with fuzzing tools!

» Fuzzing or fuzz testing is an automated software testing technique that
Involves providing invalid, unexpected, or random data as Inputs to a
program.

+ The program is then monitored for exceptions such as crashes, failing built-in
code assertions, or potential memory leaks.

~ A lot of free and open source fuzzing tools are available, including AFL
(american fuzzing loop) and syzkaller (Linux kernel fuzzer).

PERMISSIONS

+ One way to mitigate vulnerabilities in programs is not running them with root
(superuser) privileges!

~ Also, design a system where you don't need a user logged as root, and
disable root login.

«If you have an external connection to the system, use public-key
authentication (if possible) and a strong password if needed.

~ Always design with the principle of least privilege in mind!

ACCESS CONTROL

>

But the problem is that sometimes we need "root powers" to execute some
privileged operation like set the system clock or use RAW sockets.

x

And then we need to run our program as root, right?

>

Wrong! We have some options for fine-grained control over processes
permissions.

X

One of the solutions is called Linux capabilities.

LINUX CAPABILITIES

« Linux divides the privileges associated with superuser into distinct units, known as capabilities,
which can be independently enabled and disabled.

~ So the idea is to write a program that will run as root, but enable just the capabilities it needs to
do its job.

$ getcap /usr/bin/ping
/usr/bin/ping = cap_net_raw+ep

« While capabilities provide a subset of the available root privileges to a process, it is not so
flexible.

~ If you need more control over permissions, you should think about using a type of access
control called MAC (Mandatory Access Control).

DAC vs MAC

>

Linux traditionally supports Discretionary Access Control (DAC).

>

DAC is a type of access control where the access to objects is restricted based on
the identity of subjects and/or groups to which they belong ("user" and "group” flags).

*x

Another type of access control is called Mandatory Access Control (MAC).

*

MAC refers to a type of access control where the operating system constrains the
ability of a subject to access or perform some sort of operation on an object.

X

MAC is implemented in the kernel via Linux Security Modules (LSM).

LINUX SECURITY MODULES

~ LSM is a framework that allows the Linux kernel to support a variety of computer security
models.

» The most know Linux security modules that implement MAC are AppArmor, SELinux,
Smack and TOMOYO.

~ SELInux is one of the most popular (and complex) MAC implementation, developed
initially by NSA and today used in bigger projects like Android and Fedora.

« AppArmor is also a popular and more user-friendly MAC implementation, supported by
Canonical and used in some Linux distributions like Ubuntu and Debian.

~ Although our objective isn’t to go over the details on SELinux or AppArmor, you should
think about using a MAC if you need fine-grained control over process permissions.

APPLICATION SANDBOXING

» Sometimes, restricting permissions is not enough to protect the system from a
vulnerable application, and to improve security, sandboxing could be used to
Isolate applications from the rest of the system.

» Possibly the oldest sandboxing tool available in Linux is chroot, but it's not very
useful in terms of security because it will only isolate the filesystem.

« Virtualization is another form of application sandboxing in Linux, but it is too
costly, especially in embedded systems.

» Nowadays, two possible solutions to sandbox applications in embedded Linux are
Containers and Trusted Execution Environments (TEE).

LINUX CONTAINERS

+ A Linux container is a minimal filesystem with only the required software
components to run a specific application or group of applications.

~ Using some kernel features, the container will "run" completely isolated from
the rest of the system (only the kernel is shared).

»~ namespaces make it possible to isolate the execution of a process on Linux
(PID, users, network connections, mount points, etc).

~ cgroups allows to partition system resources (CPU, memory, I/O) by process or
group of processes.

~ seccomp allows to limit the system calls that a process can do.

LINUX CONTAINERS

Container 1

application(s) :
Contaliner 2
dependencies application(s) application(s)
rootfs dependencies rootfs

Linux kernel

Hardware

CONTAINERS AND SECURITY

~ Several tools are available to manage containers in Linux, including LXC,
Systemd-nspawn, Podman and Docker.

« A container is not secure by itself, but if properly configured, we can limit the
permissions of each process Inside the container and control the
communication between them, reducing the attack surface and improving the
security of the product.

+ Using in conjunction with a security module (e.g. AppArmor, SELinux), we can
greatly enhance the security of the system.

TEE

» In a system based on containers, if the kernel is compromised, all the operating
system is at risk. A Trusted Execution Environment could prevent that.

~ A Trusted Execution Environment (TEE) is an environment where the code executed
and the data accessed is isolated and protected in terms of confidentiality (no one
have access to the data) and integrity (no one can change the code and its behavior).

~ A lot of devices around us make use of a Trusted Execution Environment, including
smartphones, set-top-boxes, videogame consoles and Smart TVs.

~ TEE could be a good solution to store and manage encryption keys, store and
manage credentials and sensitive data, and protecting digital copyrighted information.

TEE

» In a system with a TEE, we have untrusted applications (UAS) running on a
Rich Execution Environment (REE) and trusted applications (TAsS) running on
a Trusted Execution Environment (TEE).

« Only trusted applications running on a TEE (Secure World) have complete
access to the main processor, peripherals and memory.

~ Hardware isolation protects TAs from untrusted applications running on the
main operating system (Non-Secure World).

TEE

Non-Secure World Secure World

Untrusted Untrusted Untrusted Trusted Trusted Trusted
App App App App App App

Embedded 0S Trusted 0S

Protected Hardware
Resources

TEE IMPLEMENTATION

~ We need hardware support to implement a TEE, so we can partition and
Isolate the hardware (busses, peripherals, memory regions, interrupts, etc) to
prevent untrusted applications from accessing protected resources.

» Most modern processors have this feature build-in (e.g. ARM's TrustZone,
RISC-V's MultiZone, Intel SGX).

« There are some commercial TEE implementations, including Kinibi, QSEE
and iTrustee.

» We have also some open source implementations like Trusty and OP-TEE.

UPDATE SYSTEM AND SECURITY

~ Despite all mitigations we have seen so far, an operating system with millions
of lines of code will certainly have bugs and vulnerabilities!

+ Having an update system in place is very important for embedded systems
and connected devices where security Is a key feature of the product.

+ The update system should be designed in the early stages of the product
development, with OTA features if possible.

~ What is more costly: invest time to implement a good update system or recall
all units to fix a bug in the software of your product?

UPDATE CHALLENGES

>

Security (authenticity, confidentiality).

>

Integrity.

>

Atomic/power fail safe.

Bandwidth.

>

*

Speed/downtime.

Rollback.

| "

>

UPDATE STRATEGIES

~ Application-based: not maintainable!

~ Package-based: update images are small but the updates are non-atomic
and dependencies could be a problem.

» Image-based: using the A/B mechanism is a very good solution, the problem
could be bandwidth and storage size.

~ Container-based: could be the best of both worlds. Makes it easier to
Implement an update system that is atomic, power fail safe, use less
bandwidth, faster, with minimal downtime and rollback capable.

NETWORK SECURITY

« If you are doing OTA updates, your device has a network connection (Wi-Fi,
Ethernet, etc).

« And if your device has a network connection, you should care about network
security!

» The first rule is to decrease the attack surface. For example:
~ Close all ports not used/needed (tools like nmap can help).
~ Disable all protocols not used (e.g IPv6, PPP, etc).

NETWORK SECURITY

+ Then make it harder to hack your device! For example:

~ Create firewall rules (prevent inbound/outbound connections, protect against
DoS attacks, prevent port scanning, etc).

~ Use a network IDS such as snort for intrusion protection/detection.

~ Communicate with external devices using a secure connection (VPN,
reverse SSH, TLS, HTTPS, etc).

~ Rate limit logins to services (ssh, web, etc) to prevent brute-force attacks.

THERE IS NO SILVER BULLET!

., ggéa'rfignat”riétrustzone "
4L PKCS#11-2Z YPLsecure coding

% pe th

& 5 gquzsyzrallertee,

S s S A Reasecure boot=™"s
o e - -

& ypncontain e.rs?o root-of-trust;),
LAddressSanitizer zAttack vectors
S buffer overflow 2. firewallRauthenticity
QJ apptﬁrggtrs]or integer overflow dm-verity % CVE e i p
%) chajn-of-trustsw== B e

m-crypjcd m'lntegr|ty€ capabilities
public-key cryptography 2 "1

mandatory dCCesSsS control%‘- %
» threat modeling O/)r"‘

symmetric cryptograp

SECURITY "GENERAL RULES”

>

Security involves all levels of the system.
« Defense in depth: have always more than one layer or type of defense.

~ Least privilege principle: do not give any more privileges than absolutely
necessary to do the required job.

» Obfuscation or "obscurity" just doesn't work.

» There Is no such thing as a system 100% secure.

~ Be aware that an attacker needs only to find one issue!

DESIGN FOR SECURITY

>

Design with security in mind and be aware of the trade-offs (a system should
be “secure enough”).

x

ldentify assets, threats, attack vectors and mitigate risks.

>

Follow good security practices, know the techniques and tools available and
use them when needed.

*

Have a good update system, monitor software vulnerabilities (CVEs) and
patch the system.

TORIZON

~ Torizon is the solution we provide to our customers as a easy-to-use Industrial
Linux Software Platform.

» We follow good practices to develop a product based on modern technologies
with a good balance between ease-of-use and security.

+ The Torizon platform is based on containers, providing the isolation needed
for a secure system.

» The Torizon platform also provides a built-in OTA update system that is
robust, fast and fail-safe.

e--loragex

Swiss. Embedded. Computing.

Q&A E\@

-

e--loragex

Swiss. Embedded. Computing.

THANK YOU
FOR YOUR INTEREST

www.toradex.com
developer.toradex.com
community.toradex.com
labs.toradex.com

	Slide267
	Slide142
	Slide270
	Slide40
	Slide87
	Slide271
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide11
	Slide265

