i.MX Security Seminar

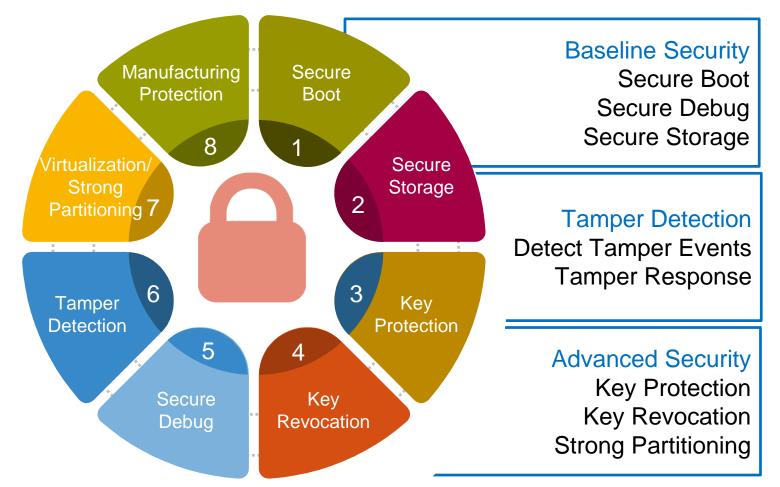
Basics and Features

BERNHARD FINK MAY 21, 2019

SECURE CONNECTIONS FOR A SMARTER WORLD

CONFIDENTIAL AND PROPRIETARY

SECURITY FUNDAMENTALS


NXP Leverages Core Competence in End-to-End System Security

Mobile and stationary machines want full access to cloud-based knowledge

This requires faster, more reliable and secure connectivity

NXP is at the forefront of secure communications and tamper resistance

Leadership experience in security markets: over 10 Billion smart cards sold

Which kind of security needs to be implemented?

- Protection of user data
 - Storage of encrypted data
 - End-to-end encryption
- Protection against non-authorized use
 - Signed firmware
 - Secure boot
 - Disable debug port
- Protection of software and hardware IP
 - Encrypted firmware
 - Protection against re-engineering
- Protection against physical access
 - Housing
 - Moulding of the electronic components

Security on Silicon level

Where does security start? When does security start? Right after reset.

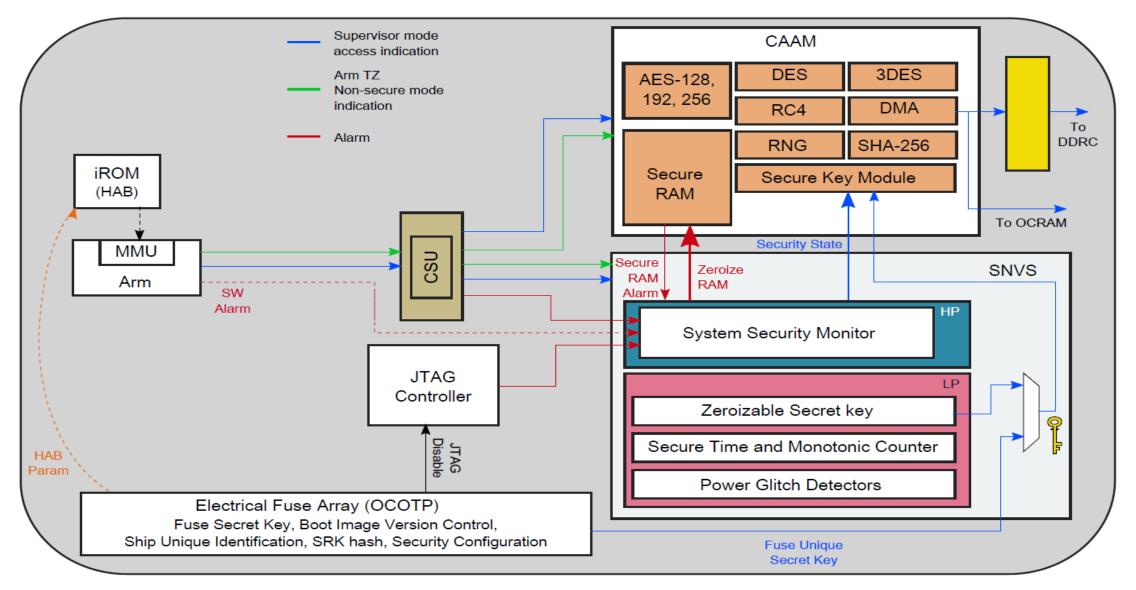
• Without the right silicon design, you will not achieve real security

 As soon as a chip is powered up and a hard-coded or soft-coded machine starts to run, you need to protect the system against attacks and bricks

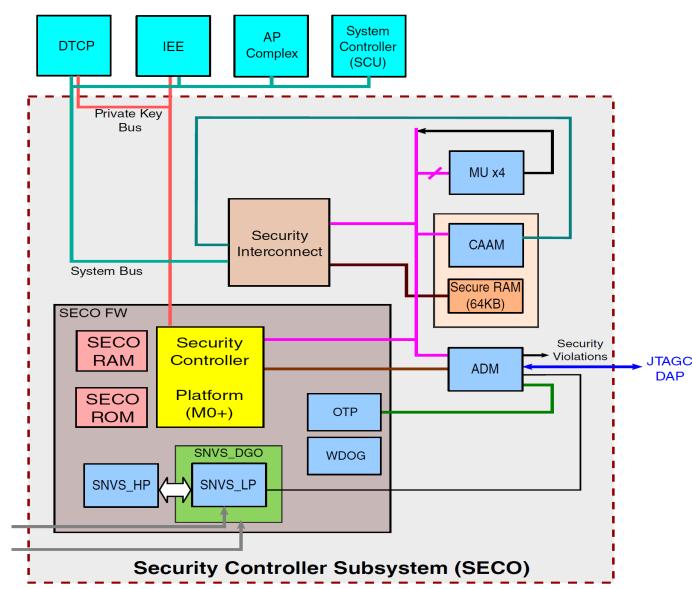
Security on Software level

What's the aim? Do not execute unauthorized software.

- Software (components) must be verified to be genuine, before they are allowed to be executed.
- For systems with external memory (for example Linux in DDR) some sort of protection against sniffing and content modification needs to be applied.


Attack Description	Attack Type		
Circumvent the secure apps using the JTAG port	Physical access to debug port		
Scan out secret keys and passwords	Physical access to debug port		
Obtain keys from memory (on-board memory probing)	Physical access to PCB		
Replace OS image in memory	Access to memory on the target (physical probing or remote)		
Obtain system keys using "key sniffing" SW running in user mode	SW + profiler		
Obtain system keys using "key sniffing" SW running in kernel mode	SW + profiler		
Attack the OS kernel to obtain privilege mode	SW		

SECURITY IMPLEMENTATION



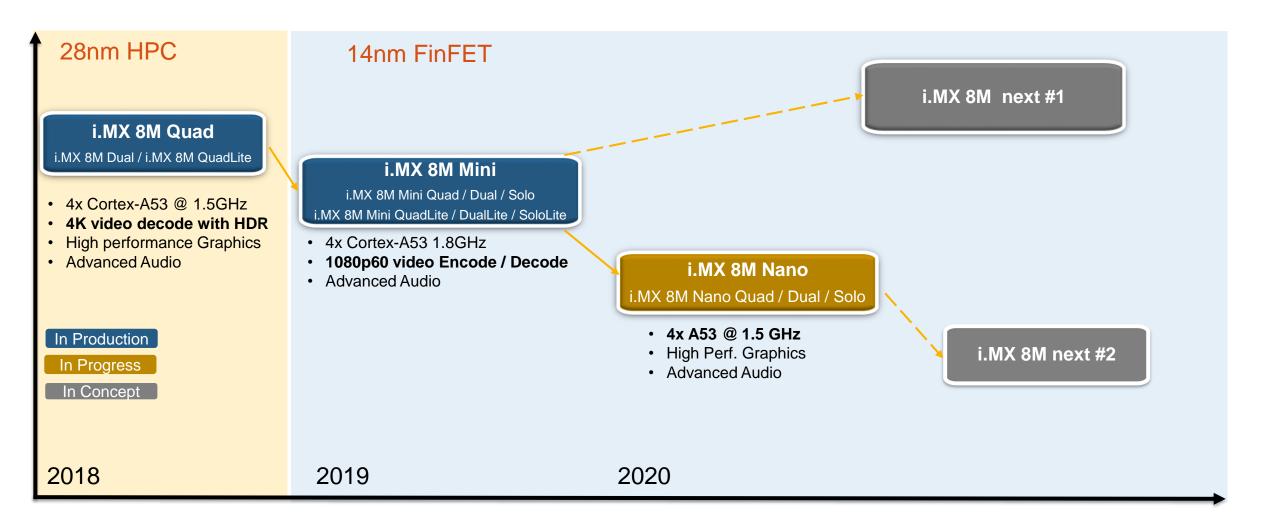
Security Controller Implementation in i.MX 8M-Mini

Security Controller Implementation in i.MX 8X

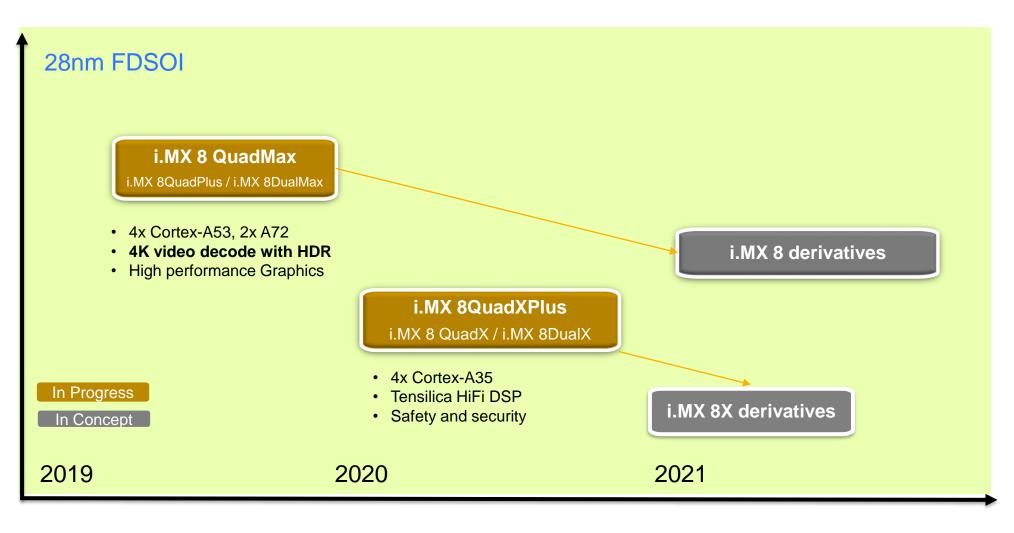
- Isolated Security Microcontroller:
 - Dedicated ROM and RAM
 - Dedicated OTP keys
- Shared Peripherals:
 - 4x Messaging Units in HW
 - RTC and Secure RTC timers
- Private Key Bus interface to outside blocks
- Cryptographic Acceleration and Assurance Module (CAAM) with secure RAM and RNG
- Authenticated Debug Support (ADM)

i.MX Security Features

Feature	i.MX6Q/D/S	i.MX6SX	i.MX6UL	i.MX7S/D	i.MX8QM	i.MX8QXP
Security Controller (SECO)	X	X	X	X	\checkmark	\checkmark
AES128/192/256, SHA1/256, DES/3DES	✓	\checkmark	\checkmark	\checkmark	✓ + SHA 384/512	✓ + SHA 384/512
Elliptic Curve DSA (up to P521/B571) RSA (up to 4096)	x	x	✓	✓	✓ High performance	✓ High performance
Crypto Accelerator Unit (CAU) (DES, AES co-processor instruction)	x	x	x	X	\checkmark	\checkmark
Certifiable RNG	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Run Time Integrity Protection	X	X	\checkmark	\checkmark	\checkmark	\checkmark
Isolated security applications (e.g. SHE)	X	X	X	X	\checkmark	\checkmark
High Assurance Boot (RSA, ECDSA)	✓RSA	✓RSA	✓RSA	✓RSA	\checkmark	\checkmark
Encrypted Boot	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark
Secure Debug	\checkmark	\checkmark	\checkmark	\checkmark	✓ Domains	✓ Domains
Always ON domain	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
Secure Storage (non-volatile)	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tamper Detection Signal	✓	\checkmark	✓ Active	✓ Active	✓ Active	✓ Active
Volt/Temp/Freq Detect	X	X	\checkmark	\checkmark	\checkmark	\checkmark
Inline Encryption	X	X	✓ BEE	x	✓ IEE	✓ IEE
Manufacturing Protection	X	X	X	\checkmark	\checkmark	\checkmark
Resource Domain Isolation	x	✓	x	✓	✓	\checkmark
Content Protection	✓ 6Q 1.x only	x	x	X	✓ HDCP 1.x/2.x, DTCP	✓ DTCP



I.MX PRODUCT ROADMAP


Roadmap for i.MX 8M Series

28nm HPC and 14nm FinFET technology can cover Consumer and Industrial platforms

Roadmap for i.MX 8 / 8X Series

28nm FDSOI technology covers Automotive, Industrial and Consumer platforms

SECURE CONNECTIONS FOR A SMARTER WORLD